charge Hydrostatique et metres colonne fluide de pressioncharge Hydrostatique et metres colonne fluide de pression

The pressure in one point of the network is the sum of energies of dynamic and static pressures. These transformations of energy are reversible or irreversible

the pressure loss is irreversible loss of pressure because the head loss is converted into heat or noise that we do not know re-transformed into pressure.

The pressure generated by changing altitude or height of load (hydrostatic pressure) is reversible: If the duct up of 1 meter, and down of 1 meter, the balance is zero:l:

the pressure generated by the change in velocity (dynamic pressure) is reversible:If for a given flow a converging cone accelerates the fluid the pressure decreases (see Bernoulli), but if another diverging cone, positioned downstream, slows down the fluid to its original speed, the balance of dynamic pressure is zero:

Hydrostatic load pressure and meter fluid column

The height of a column of fluid generates a pressure at its base.

Fluid height (in meters) x density of the fluid (kg/m3) x gravity (9.81) = hydrostatic pressure (in Pascals)

1 meter of water density 1000Kg/m3 =9810 pascals (Newtons/m²)

This pressure is called hydrostatic pressure when to pump and raise the water column.

For sucking a liquid in a duct is created a depression, If the pressure drop of the liquid falls below its saturation vapor pressure,the liquid begins to boil. (Steam production) This phenomenon is called cavitation.This vacuum vaporizing water is achieved when a column of water is sucked, around 10 meters in height, Water vaporizes and releases steam which fills the depression, it is thus impossible to pump more than 8-10 meters deep, by aspirating. It is therefore necessary to pump the fluid outlet and place the pump in the bottom of the well ... see cavitation

 

Pressure losses (head loss) are often expressed in meters column of fluid:

interface de charge hydrostatique dans mecaflux

hydrostatic head interface mecaflux

 

charge hydrostatique derive aerodynamique hydrodynamique construire aile foil construire eolienne dimensionner conduits fumée carene dirigeable construire helice propulsion derive aerodynamique hydrodynamique frottement sur une surface de coque trainée resistance au vent trainée resistance au vent construire eolienne trainée resistance au vent conception helice bateaux derive aerodynamique hydrodynamique carene dirigeable frottement sur une surface de coque construire aile foil construire aile foil conception hydrolienne calcul voile frottement sur une surface de coque trainée resistance au vent calcul voile construire aile foil construire eolienne construire helice propulsion aeraulique aspiration air systemes ventilation aeration pertes charges vannes debit et pression conduits pompes et ventilateurs vidange reservoir construire aile foil Logiciels de la suite Mecaflux Forces sur des objets géometriques dans un courant de fluide ramification et boucles réseaux dimensionner conduits fumée calcul systemes réseaux fluides gaz liquides helice a vitesse nulle sustentation resistance aerodynamique vehicules calcul debit rivierre helice de captage turbine Kaplan hydroelectrique charge hydrostatique carene dirigeable construire helice propulsion derive aerodynamique hydrodynamique