similitude loi de froude similitudes pour modéles réduits en hydrodynamiquesimilitude loi de froude similitudes pour modéles réduits en hydrodynamique

See:

hull resistance

 

SIMILITUDE and ship resistance

the ship resistance is generally predicted and studied with tests on scale models basins. To apply the results obtained, from model to prototype we must use similarity parameters.

the outcomes sought and are mainly: the ship resistance (hydrodynamic resistance)

In this case the resistance (Rh) is reduced for the operating facilitated, to a resistance factor named specific resistance. This cœfficient (Ch ) is the ratio of the resistance (Rh) on displacement (D)(equivalent weight of water immersed volume X water density kg/m3):Ch=Rh/D

Considering that the geometric shapes and the weight distribution of the model are identical to the actual ship (prototype) , the Rh determining parameters are:

ship resistance Rh is a function of:

 

at the transition from model to full-scale prototype, g  Gravity, r  water density, n  kinematic viscosity of water, ra air density, na kinematic viscosity of air, t air water surface tension, Pa atmospheric pressure, Pv Vapor pressure of water, remain constant.

This implies that the L characteristic length (waterline length) and V speed advance, must change the model to the real world, keeping the Froude number and the Reynolds number constant, without changing the parameters g gravity, and n kinematic viscosity of water, which is impossible.

As we can not meet both the similarity of Reynolds (Re=V.L/n) and Froude(Fr= v/w(g.L) is performed for practical reasons, the Froude similarity, solving Frmodel= Frreal by adjusting the speed of the model.

With Ch specific resistance and Cv viscous component of resistance (See Froude):

Ch real = Ch model - (Cvmodel - Cvreal)

    - (Cvmodel - Cv real) = frictional correction corresponds to the fact that we neglected in the similarity of Reynolds

the frictional correction is a negative value which is applied as a function of the Froude number: it can vary from  -0.15 Ch model for fast vessels with high Fr (0.5 _ 0.6) to  -0.25 Ch model for slow ships with low Fr (0.15 _ 0.2)

 

charge hydrostatique derive aerodynamique hydrodynamique construire aile foil construire eolienne dimensionner conduits fumée carene dirigeable construire helice propulsion derive aerodynamique hydrodynamique frottement sur une surface de coque trainée resistance au vent trainée resistance au vent construire eolienne trainée resistance au vent conception helice bateaux derive aerodynamique hydrodynamique carene dirigeable frottement sur une surface de coque construire aile foil construire aile foil conception hydrolienne calcul voile frottement sur une surface de coque trainée resistance au vent calcul voile construire aile foil construire eolienne construire helice propulsion aeraulique aspiration air systemes ventilation aeration pertes charges vannes debit et pression conduits pompes et ventilateurs vidange reservoir construire aile foil Logiciels de la suite Mecaflux Forces sur des objets géometriques dans un courant de fluide ramification et boucles réseaux dimensionner conduits fumée calcul systemes réseaux fluides gaz liquides helice a vitesse nulle sustentation resistance aerodynamique vehicules calcul debit rivierre helice de captage turbine Kaplan hydroelectrique charge hydrostatique carene dirigeable construire helice propulsion derive aerodynamique hydrodynamique