Point fonctionnement turbinePoint fonctionnement turbine

See also:

Modeling turbine kaplan in heliciel guide vanes draft tube turbine

 

Operating point of turbine

The Operating point of a turbine, is defined by the rotational speed and the fluid velocity. The propeller turbine must have an optimized twist to its operating point. The optimization of the propeller turbine through the analysis of its performance at different operating points.

For a propeller turbine, converting the energy of a fluid stream in torque on a shaft, the actual speed, of the energy capture propeller, will be the speed that balance:

For a propeller propellant type, engine torque is the engine of the aircraft or vessel, and the rotation speed is stabilized when the resistant torque of the propeller is equal to the engine torque.

 

The approach is similar to a propeller designed for energy capture or propulsion, we must find a balance point between the motor torque and the load torque.. This is the point of intersection of the torque curve the propeller and the curves of the motor or generator, depending on the rotational speed.

 

o quickly see what will be the operating speed of your system: generator / turbine or motor / propeller, Simply place on a same graph, the torque curve of the propeller, and the torque curve given for the motor or generator.To facilitate graphics resolution, of the actual operating point of the system, it is possible to insert your torque curve (provided by the manufacturer of the generator or motor) and make it appear superimposed:

input torque curve:

 

generator curve

It is possible to enter multiple torque curves representing several motors or generators (3 motors curves in the example below) and editing performance curves, depending on the rotational speed, to view directly the speed of rotation and the performance of the same propeller mounted on a variety of motors or generators of different powers:

 

speeds turbine propeller

So here we find that: We can also overlay performance data and thrust to know the performance of the system in all three cases:

traction power turbine propeller

 

ISo here we find that:

Of course these values ​​are valid only if the propeller has a strength appropriate to the calculated thrust, and that cavitation does not spray fluid. We must therefore control these parameters, at speeds of rotations found!

 

 

charge hydrostatique derive aerodynamique hydrodynamique construire aile foil construire eolienne dimensionner conduits fumée carene dirigeable construire helice propulsion derive aerodynamique hydrodynamique frottement sur une surface de coque trainée resistance au vent trainée resistance au vent construire eolienne trainée resistance au vent conception helice bateaux derive aerodynamique hydrodynamique carene dirigeable frottement sur une surface de coque construire aile foil construire aile foil conception hydrolienne calcul voile frottement sur une surface de coque trainée resistance au vent calcul voile construire aile foil construire eolienne construire helice propulsion aeraulique aspiration air systemes ventilation aeration pertes charges vannes debit et pression conduits pompes et ventilateurs vidange reservoir construire aile foil Logiciels de la suite Mecaflux Forces sur des objets géometriques dans un courant de fluide ramification et boucles réseaux dimensionner conduits fumée calcul systemes réseaux fluides gaz liquides helice a vitesse nulle sustentation resistance aerodynamique vehicules calcul debit rivierre helice de captage turbine Kaplan hydroelectrique charge hydrostatique carene dirigeable construire helice propulsion derive aerodynamique hydrodynamique