Débit volume ou débits massique debit normal nm3 nm3/h m3 m3/hDébit volume ou débits massique debit normal nm3 nm3/h m3 m3/h

Mass flow, volume flow

and normal flow (normal m3)

We consider the flow regime is iso-volume or stationary

(that the fluid is incompressible liquid or of constant density, gas)

 

Mass flow =volume flow x density

Volume flow (m3/sec)= section(m²) x average speed (m / sec)

Volume flow (m3/sec)=volume of fluid passed (m3) / flow time (seconds)

For compressible fluids (gas or air):

The gas being compressible, it is possible to change a volume of the same amount of gasby compressing or changing its temperature. It becomes very difficult to speak of a quantity of gas volume without giving the pressure and temperature of the gas when the volume was measured.  It would be difficult to give a temperature and pressure whenever we speak of a volume of gas. Then the temperature and pressure at the time of measurement of the volume, are normalized at called normal conditions. This is called normal m3.

Attention, there are two standards, and thus potential errors in conversions:

same pressure of 1013 millibars (average atmospheric pressure) for 2 standards:

DIN 1343 : temperature 273.15K (0°C)
ISO 2533 :
temperature 288.15K (15°C)

For calculations of head loss, the size of volumes of gas (compressed or not) moved into the ducts must be given in cubic meters (m3).

For conversions or Nm3 Nm3 m3 / h m3 / h:

P1V1/T1 = P2V2/T2

p1 and T1 being normal temperatures and pressures v1 is the normal volume (relaxed)

p2 and T2 being the temperature and pressure gas V2 is the volume of the compressed gas



with:
P = Absolute pressure (gauge pressure + atmospheric pressure)
V = volume
T = temperature Kelvin

flow rate in Mecaflux standard

A graphical analysis tool based on the flow can test your network in a flow range selected, and create graphs showing variations of pressure, loss, and energy consumption, depending on the flow. This tool is very effective for the choice of material, in terms of annual operating costs.

flow and pressure drop

Example conversion volume flow, mass flow and normal flow (Nm3 / h) real flow m3 / h mecaflux:

debit

integrated converter mecaflux

The conversion interface normal volume (nm3) and real (m3) converts the normal flow (Nm3 / h) to real (m3 / h)

conversion flow normal cubic meter

 

charge hydrostatique derive aerodynamique hydrodynamique construire aile foil construire eolienne dimensionner conduits fumée carene dirigeable construire helice propulsion derive aerodynamique hydrodynamique frottement sur une surface de coque trainée resistance au vent trainée resistance au vent construire eolienne trainée resistance au vent conception helice bateaux derive aerodynamique hydrodynamique carene dirigeable frottement sur une surface de coque construire aile foil construire aile foil conception hydrolienne calcul voile frottement sur une surface de coque trainée resistance au vent calcul voile construire aile foil construire eolienne construire helice propulsion aeraulique aspiration air systemes ventilation aeration pertes charges vannes debit et pression conduits pompes et ventilateurs vidange reservoir construire aile foil Logiciels de la suite Mecaflux Forces sur des objets géometriques dans un courant de fluide ramification et boucles réseaux dimensionner conduits fumée calcul systemes réseaux fluides gaz liquides helice a vitesse nulle sustentation resistance aerodynamique vehicules calcul debit rivierre helice de captage turbine Kaplan hydroelectrique charge hydrostatique carene dirigeable construire helice propulsion derive aerodynamique hydrodynamique