régime d'écoulement et coéfficient de pertes de charge hydrauliquerégime d'écoulement et coéfficient de pertes de charge hydraulique

Boundary layer modeling in Heliciel:

See also: boundary layer on the aerodynamic and hydrodynamic profiles

flow regime head loss coefficient

Depending on the flow regime pressure head loss vary as the behavior of the fluid changes. Example of turbulent flow regime in a pipe section:

turbulent flow Regimes in a pipe

Friction and viscosity of the fluid causes difference of velocity, according to the distance of the walls of the pipes. The speed variation generates turbulence and losses.

flow Regimes in a pipe: 

flow Regimes in a pipe

To date no equation can fully assess the pressure drop whatever the type of flow. it is therefore necessary to determine the flow regime to choose the equation that is suitable for calculation of the coefficient of losses.

With Mecaflux standard,

The flow regimes vary according to:

 Velocity, viscosity, pipe diameter, roughness, density.

 The flow regime is given by the Reynolds number: Re

These values ​​of Reynolds transition are approximate,because transitions are gradual and can be activated by irregularities of surface states.

 

the flow regime in the ducts is determined, depending on your settings of pipes: roughness, flow, diameter...:

flow regime

 

Frictional forces also depend on the flow regime, the regime of laminar to turbulent varies depending on the distance to the leading edge.

We distinguish a critical distance (x critic) at which the transition between laminar and turbulent occurs. the boundary layer thickness varies depending on the flow regime and the distance from the leading edge.

With Mecaflux standard, the Regime of flow on a plate is determined using the detailed study of a plate. you can evaluate the thickness of the boundary layer, the critical distance transition of laminar flow to turbulent, depending on the fluid velocity and surface roughness of your choice.

choose flat plate for a detailed study of the boundary layer and surface friction

 

charge hydrostatique derive aerodynamique hydrodynamique construire aile foil construire eolienne dimensionner conduits fumée carene dirigeable construire helice propulsion derive aerodynamique hydrodynamique frottement sur une surface de coque trainée resistance au vent trainée resistance au vent construire eolienne trainée resistance au vent conception helice bateaux derive aerodynamique hydrodynamique carene dirigeable frottement sur une surface de coque construire aile foil construire aile foil conception hydrolienne calcul voile frottement sur une surface de coque trainée resistance au vent calcul voile construire aile foil construire eolienne construire helice propulsion aeraulique aspiration air systemes ventilation aeration pertes charges vannes debit et pression conduits pompes et ventilateurs vidange reservoir construire aile foil Logiciels de la suite Mecaflux Forces sur des objets géometriques dans un courant de fluide ramification et boucles réseaux dimensionner conduits fumée calcul systemes réseaux fluides gaz liquides helice a vitesse nulle sustentation resistance aerodynamique vehicules calcul debit rivierre helice de captage turbine Kaplan hydroelectrique charge hydrostatique carene dirigeable construire helice propulsion derive aerodynamique hydrodynamique